Product Description
Coresun Drive slewing drive gear motor worm drive for horizontal single-axis solar tracking system. For horizontal single-axis solar tracking system, the main shaft of solar panel will adjust the angle to precisely track the declination angle. This kind of slewing drive is only applied for low latitudes area.
Coresun Drive slewing drive is used for the solar tracker with the highest yield-per-acre performance and greatest land-use options, ideal for large-scale PV projects. Those features combined with proven cost-effective installation and operation.
Worm Gear Slewing Drive for Solar Tracker. Single axis trackers. Single axis trackers have one degree of freedom that acts as an axis of rotation. The axis of rotation of single axis trackers is typically aligned along a true North meridian.
Tilting Moment Torque: Torque is the load multiplied by distance between the position of load and the center of slewing bearing. If the qorque generated by load and distance is greater than the rated tilting moment torque, slewing drive will be overturned.
Radial load: Load vertical to the axis of slewing bearing
Axial load: Load parallel to the axis of slewing bearing
Holding torque:It is the reverse torque.When the drive is rotating reversely, and parts are not damaged,The maximum torque achieved is called holding torque.
Self-locking: Only when loaded, the slewing drive is not able to reverse rotate and thus called self-loc
Model |
VH9 |
Place of Origin |
HangZhou,China |
Brand |
Coresun Drive |
Type |
Vertical |
Material |
42CrMo,50Mn |
Output Torque |
6405N.m |
Tilting Moment Torque |
12KN.m |
Holding Torque |
56KN.m |
Static Axial Rating |
350KN |
Static Radial Rating |
120KN |
Dynamic Axial Rating |
168KN |
Dynamic Radial Rating |
65KN |
Gear Ratio |
61:1 |
Efficiency |
40% |
About Us
Coresun – Practical Slewing Drive & Slewing Bearing Promoter.
We are committed to researching, developing and applying high quality, precision transmission equipment products,who provides reliable mechanical actuator for horizonal single axis, dual-axis photovoltaic tracking system, CSP,CPV solar tracking design.Our professional and high-quality products will be also applied well as a steady solution on aerial working platform, truck crane, timber grab, drilling rig, spray equipment, hydraulic module vehicle,automated assembly lines, wind yaw systems,etc.
1. Our company’s worm gear reducer (slewing drive device) adopts the transmission mode of plane secondary enveloping ring surface worm combined with slewing support, which can realize multi-tooth meshing.
2. On the premise of not affecting the performance of the whole device, we improved and optimized it, and its overall thickness became thinner and weight became lighter.
3. The rotary device at the center is a through hole for the customer to use. The original product is solid.
4. The worm material is 42CrMo, the secondary nitride treatment, the slewing bearing material is 50Mn, the teeth are quenched, and its wear resistance is good.
High quality vertical slewing drive worm gear
Slewing drive worm gear gearbox for solar tracker system with solar tracker controller
Higher tracking precision
IP class 65
Worm Gear Drive System
Designed for Outer Ring Rotation
Totally Enclosed Ball Bearing
Ready for Electrical Motor Mounting
Auto Tracking System with 24VDC motor or 220V,380V AC motor
Main Parts And Structure
Worm Shaft
Slewing Gear
Casting Housing
Square Output Shaft as Customized Design
Products Photo
Application
Photovoltaic power generation is an important application field of rotary drive, using slewing drive VH9 as a rotating component of solar photovoltaic modules, according to the position of the sun in a day to the host of the angle and elevation of accurate adjustment, time is the solar panel for better reception angle, can make greater efficiency of power generation.
Products Certificate
Coresun Drive slewing drive gear motor have arroved by CE and ISO2001 certificate.
CONTACT US
It is sincerely looking CHINAMFG to cooperating with you for and providing you the best quality product & service with all of our heart!
Feature: | Corrosion-Resistant |
---|---|
Step: | Double-Step |
Openness: | Closed |
Installation: | Vertical |
Transmission Form: | Worm |
Type: | Single-Row Ball |
Customization: |
Available
| Customized Request |
---|
Are worm gears suitable for high-torque applications?
Worm gears are indeed well-suited for high-torque applications. Here’s a detailed explanation of why worm gears are suitable for high-torque applications:
Worm gears are known for their ability to provide significant speed reduction and torque multiplication. They consist of a threaded cylindrical gear, called the worm, and a toothed wheel, called the worm wheel or worm gear. The interaction between the worm and the worm wheel enables the transmission of motion and torque.
Here are the reasons why worm gears are suitable for high-torque applications:
- High gear reduction ratio: Worm gears offer high gear reduction ratios, typically ranging from 20:1 to 300:1 or even higher. The large reduction ratio allows for a significant decrease in rotational speed while multiplying the torque output. This makes worm gears effective in applications that require high levels of torque.
- Self-locking capability: Worm gears possess a unique self-locking property, which means they can hold position and prevent backdriving without the need for additional braking mechanisms. The angle of the worm thread creates a mechanical advantage that resists reverse rotation of the worm wheel, providing excellent self-locking characteristics. This self-locking capability makes worm gears ideal for applications where holding the load in place is crucial, such as in lifting and hoisting equipment.
- Sturdy and robust design: Worm gears are typically constructed with durable materials, such as steel or bronze, which offer high strength and resistance to wear. This robust design enables them to handle heavy loads and transmit substantial torque without compromising their performance or longevity.
- High shock-load resistance: Worm gears exhibit good resistance to shock loads, which are sudden or intermittent loads that exceed the normal operating conditions. The sliding contact between the worm and the worm wheel teeth allows for some degree of shock absorption, making worm gears suitable for applications that involve frequent or unexpected high-torque impacts.
- Compact and space-efficient: Worm gears have a compact design, making them space-efficient and suitable for applications where size is a constraint. The compactness of worm gears allows for easy integration into machinery and equipment, even when there are spatial limitations.
It’s important to consider that while worm gears excel in high-torque applications, they may not be suitable for high-speed applications. The sliding contact between the worm and the worm wheel generates friction, which can lead to heat generation and reduced efficiency at high speeds. Therefore, worm gears are typically preferred in low to moderate speed applications where high torque output is required.
When selecting a worm gear for a high-torque application, it’s important to consider the specific torque requirements, operating conditions, and any additional factors such as speed, efficiency, and positional stability. Proper sizing, lubrication, and maintenance are also crucial to ensure optimal performance and longevity in high-torque applications.
How do you address noise and vibration issues in a worm gear system?
Noise and vibration issues can arise in a worm gear system due to various factors such as misalignment, improper lubrication, gear wear, or resonance. Addressing these issues is important to ensure smooth and quiet operation of the system. Here’s a detailed explanation of how to address noise and vibration issues in a worm gear system:
1. Misalignment correction: Misalignment between the worm and the worm wheel can cause noise and vibration. Ensuring proper alignment of the gears by adjusting their positions and alignment tolerances can help reduce these issues. Precise alignment minimizes tooth contact errors and improves the meshing efficiency, resulting in reduced noise and vibration levels.
2. Lubrication optimization: Inadequate or improper lubrication can lead to increased friction and wear, resulting in noise and vibration. Using the correct lubricant with the appropriate viscosity and additives, and ensuring proper lubrication intervals, can help reduce friction and dampen vibrations. Regular lubricant analysis and replenishment can also prevent excessive wear and maintain optimal performance.
3. Gear inspection and replacement: Wear and damage to the gear teeth can contribute to noise and vibration problems. Regular inspection of the worm gear system allows for early detection of any worn or damaged teeth. Timely replacement of worn gears or damaged components helps maintain the integrity of the gear mesh and reduces noise and vibration levels.
4. Noise reduction measures: Various noise reduction measures can be implemented to minimize noise in a worm gear system. These include using noise-dampening materials or coatings, adding sound insulation or vibration-absorbing pads to the housing, and incorporating noise-reducing features in the gear design, such as profile modifications or helical teeth. These measures help attenuate noise and vibration transmission and improve overall system performance.
5. Resonance mitigation: Resonance, which occurs when the natural frequency of the system matches the excitation frequency, can amplify noise and vibration. To mitigate resonance, design modifications such as changing gear stiffness, altering the system’s natural frequencies, or adding damping elements can be considered. Analytical tools like finite element analysis (FEA) can help identify resonant frequencies and guide the design changes to reduce vibration and noise.
6. Isolation and damping: Isolation and damping techniques can be employed to minimize noise and vibration transmission to the surrounding structures. This can involve using resilient mounts or isolators to separate the gear system from the rest of the equipment or incorporating damping materials or devices within the gear housing to absorb vibrations and reduce noise propagation.
7. Tightening and securing: Loose or improperly tightened components can generate noise and vibration. Ensuring that all fasteners, bearings, and other components are properly tightened and secured eliminates sources of vibration and reduces noise. Regular inspections and maintenance should include checking for loose or worn-out parts and addressing them promptly.
Addressing noise and vibration issues in a worm gear system often requires a systematic approach that considers multiple factors. The specific measures employed may vary depending on the nature of the problem, the operating conditions, and the desired performance objectives. Collaborating with experts in gear design, vibration analysis, or noise control can be beneficial in identifying and implementing effective solutions.
What are the applications of a worm gear?
A worm gear is a type of gear mechanism that consists of a threaded worm and a mating gear, known as the worm wheel or worm gear. It is widely used in various applications where a high gear ratio and compact size are required. Here are some specific applications of worm gears:
- Elevators and Lifts: Worm gears are extensively used in elevator and lift systems. They provide the necessary gear reduction to lift heavy loads while maintaining smooth and controlled vertical movement.
- Steering Systems: Worm gears are commonly found in automotive steering systems. They convert the rotational motion of the steering wheel into the linear motion required to turn the vehicle’s wheels.
- Conveyors: Worm gears are employed in conveyor systems, particularly for applications that require moving materials at an inclined angle. They offer the necessary torque and control for efficient material handling.
- Machine Tools: Worm gears are used in machine tools such as milling machines, lathes, and grinders. They enable precise control over the machine’s speed and feed rate, resulting in accurate machining operations.
- Packaging Equipment: Worm gears are utilized in packaging machinery to drive various components such as conveyor belts, rotary tables, and filling mechanisms. They ensure synchronized and efficient packaging processes.
- Rotary Actuators: Worm gears find applications in rotary actuators, which are used in robotics, industrial automation, and valve control. They provide precise positioning and torque output for rotational movements.
- Textile Machinery: Worm gears are employed in textile machinery for applications like yarn winding, loom mechanisms, and fabric tensioning. They ensure smooth and controlled movement of threads and fabrics.
- Raising and Lowering Mechanisms: Worm gears are used in raising and lowering mechanisms, such as those found in stage platforms, scissor lifts, and adjustable workbenches. They enable controlled vertical movement with high load capacity.
These are just a few examples of the applications of worm gears. Their unique characteristics, including high gear reduction ratios, compact size, and self-locking capabilities, make them suitable for a wide range of industries and mechanical systems.
editor by CX 2023-09-18